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Abstract
Modern data center applications have multi-megabyte instruc-
tion footprints that easily exhaust on-chip cache structures,
which typically have a size of only a couple hundred kilobytes.
Consequently, today’s data center applications suffer from
frequent Instruction cache (I-cache) and Instruction Transla-
tion Lookaside Buffer (I-TLB) misses, causing performance
losses worth millions of dollars. To make matters worse, the
multi-megabyte instruction footprint of the Linux kernel pre-
cipitates an undue burden on the performance of data center
applications.

In this paper, we perform a comprehensive characterization
of the Linux kernel’s control-flow behavior for 8 data center
applications from different domains and observe that these
applications show close resemblance in their usage of Linux
kernel features. Based on this insight, we combine Linux ker-
nel execution profiles from different data center applications
to generate a “universal” profile which we use to optimize the
code layout of the Linux kernel. Our evaluation shows that
profile-guided optimizations of the Linux kernel using this
universal profile achieve an average end-to-end application
speedup of 8.02% for 8 data center applications.

1 Introduction

Modern data center applications have large instruction foot-
prints due to complex and deep software stacks [8,9,12,15,23,
26, 30]. Recent studies from Google and Facebook estimate
that the typical instruction footprints for these applications
range from tens to hundreds of megabytes [9,26]. On the other
hand, on-chip cache structures like Instruction cache (I-cache)
and Instruction Translation Lookaside Buffer (I-TLB) range
only up to hundreds of kilobytes [16]. As a result, today’s pro-
cessors face frequent I-cache and I-TLB misses while running
data center applications [8,12,15,47] and incur millions of dol-
lars in energy and management costs [9]. Consequently, even
a single-digit speedup for these widely-deployed applications
substantially reduces data centers’ Total Cost of Ownership
(TCO) and planet-scale carbon footprint [30].

The significance of reducing I-cache and I-TLB misses for
data center applications has inspired researchers from both
academia and industry to propose code layout optimizations
that improve instruction locality [11, 13, 17, 19–26, 28, 31].
These techniques monitor the execution of data center applica-
tions in production and leverage production profiles to reorder
basic-blocks and functions in a profile-guided manner. Prior
works [11, 25] have shown the effectiveness of these profile-
guided optimizations (PGO) in achieving 7-11% end-to-end
speedup for real-world data center applications. Consequently,
these techniques are widely deployed in today’s data cen-
ters [9, 11].

Despite the widespread adoption of PGO techniques for
data center applications, optimizing the Linux kernel in a
profile-guided manner has received little attention from both
academic and industry researchers [5, 7, 29, 43–45]. To close
this gap, we investigate the implications of profile-guided
kernel optimizations for data center applications in this paper.
Specifically, we examine the kernel usage for 8 real-world
data center applications and observe that these applications
spend 43-74% (61% on average) of their overall execution
time executing instructions within the kernel. Our characteri-
zation also reveals that 43-79% of all I-cache misses (61% on
average) and 10-86% (46% on average) of all I-TLB misses
for these data center applications originate from the kernel.
Thus, our investigation shows the significance of optimizing
the Linux kernel’s multi-megabyte code footprint for data
center applications.

Encouraged by these results, we examine the kernel profiles
for different data center applications to measure the similar-
ity and variation across different profiles. In particular, we
study how the control-flow behavior of the Linux kernel varies
across different data center applications since this behavior
dominates how the code layout is reordered in a profile-guided
manner. To this end, we leverage state-of-the-art measures of
similarity metrics, including cosine similarity and Lp-norms,
and show that these 8 applications exhibit close resemblance
in their usage of the kernel’s control-flow behavior.



Table 1: Data center applications, their versions, and their
benchmarks we study.

Applications Versions Benchmarks
Apache [35] 2.4.41 ApacheBench [32]
Nginx [39] 1.18 ApacheBench [32]
Redis [41] 5.0.7 Redis benchmark [6]
Memcached [37] 1.5.22 Redis benchmark [3, 6]
LevelDB [33] 1.22 db_bench [4]
RocksDB [42] 6.15.2 db_bench [4]
MySQL [38] 8.0.23 sysbench [2]
PostgreSQL [40] 12.5 sysbench [2]

Driven by our characterization’s insight, we combine multi-
ple kernel profiles from different data center applications and
generate a “universal” kernel profile. Furthermore, we opti-
mize the Linux kernel using this universal profile and evaluate
the effectiveness of the optimization in the context of 8 data
center applications. In our evaluation, universal profile-guided
kernel optimizations achieve an average end-to-end speedup
of 8.02% for our selected data center applications. Our evalu-
ation also shows that optimizations using a universal kernel
profile achieve an almost identical speedup to optimizations
performed using application-specific Linux kernel profiles.

In this paper, we make the following contributions:
• We perform a comprehensive characterization of the Linux

kernel’s control-flow behavior across 8 real-world data cen-
ter applications and show that profile-guided optimizations
of the Linux kernel have significant potential to improve
data center performance in a generalized way.

• We combine kernel profiles from multiple applications to
create a universal profile and evaluate the effectiveness of
using this universal profile to optimize the Linux kernel –
providing a substantial speedup for data center applications.

2 Understanding the kernel’s usage for mod-
ern data center applications

2.1 Experimental methodology
Data center applications. We investigate the Linux kernel’s
usage for modern data center applications using 8 open-source
applications that are widely-deployed in today’s data centers.
Table 1 lists these data center applications and their bench-
marks we study. We analyze two web server applications
(Apache and Nginx), two in-memory caching systems (Redis
and Memcached), two on-disk key-value databases (LevelDB
and RocksDB), and two relational database management sys-
tems (MySQL and PostgreSQL).
Data collection methodology. We conduct our experiments
in Ubuntu 20.04 LTS using Linux kernel 5.11. We build and
optimize the Linux kernel in a profile-guided manner using
LLVM (13.0.0). To collect the kernel’s execution profile, we

leverage the instrumentation-driven gcov [36] tool, clang [1],
and sampling-based Linux perf [34] tool. We use a 12-core
1.10GHz Intel(R) Core(TM) i7-10710U machine, with 64KB
of L1-cache (32KB instruction and 32KB data), 256KB of
L2-cache, 20MB of L3-cache (shared across the same NUMA
node), and 16 GB of RAM.
Profile comparison metrics. We analyze the usage of the
Linux kernel across different applications by comparing the
kernel execution profiles for these applications. To do this
comparison, we use several state-of-the-art similarity and
difference metrics from data mining and machine learning
literature. Such metrics include confusion matrices, cosine
similarity, and Lp norms. We provide a brief description of
these metrics in the next sections.

The Linux kernel’s execution profile consists of several
control-flow information, including execution frequencies for
functions/branch instructions and taken/not-taken (i.e., fall-
through) frequencies for branch instructions. To understand
how the kernel’s profile varies across different applications,
we compare this control-flow information using confusion
matrices. To create a confusion matrix for control-flow infor-
mation, we first create a feature vector for each application
using a common (ordered) set of features. For example, the
feature vector for function execution frequency is the num-
ber of executions for each kernel function invoked by the
application. Similarly, the feature vector for branch execu-
tion frequency is the number of executions for each branch
instruction invoked by the application in the kernel. Next, we
compare these feature vectors using cosine similarity and Lp
norms and create confusion matrices.
Cosine similarity. The first measure of similarity we use is
cosine similarity. Let u and v be the feature vectors for the
applications i and j respectively. The cosine similarity is then
defined as,

s(u,v) =
u · v

∥u∥∥v∥
,

where u · v is the dot product between the feature vectors, u
and v, and ∥·∥ is the norm for a given feature vector. Cosine
similarity has the range between zero and one, where one
represents two perfectly aligned feature vectors and zero rep-
resents two feature vectors that are orthogonal to each other.
Geometrically, cosine similarity can be interpreted as the
angle between two unit vectors. This makes it natural to use
cosine similarity to evaluate any metric that could be normal-
ized to one, such as function execution frequency and branch
execution frequency.
Lp norms. The second metric we consider is Lp norms. Lp
norms of vector differences are defined as,

s(u,v) = ∥u− v∥p =

(
|v|

∑
k=1

|uk − vk|p
) 1

p

,

where |·| is the length of the feature vector. Note that for
our analyses, |u|= |v|. The norm of vector differences has a



Data center
applications

% of
cycles
spent

in kernel

% of
instructions

executed
in kernel

% of
I-cache
misses

in kernel

% of
I-TLB
misses

in kernel
Apache 62.88% 64.55% 60.37% 63.11%
Nginx 74.02% 74.86% 68.3% 80.45%
Redis 69.84% 56.96% 78.88% 85.55%

Memcached 69.07% 55.04% 74.31% 51.62%
LevelDB 43.05% 30.27% 56.67% 31.7%
RocksDB 46.34% 41.79% 42.97% 18.19%
MySQL 63.26% 59.21% 64.86% 10.38%

PostgreSQL 60.00% 73.22% 43.85% 24.40%

Table 2: Hardware performance event (e.g., CPU cycles,
instructions, I-cache misses, and I-TLB misses) statistics for
data center applications: Linux kernel is the root cause for a
large fraction (46-61%) of hardware issues including I-cache
and I-TLB misses for data center applications.

lower bound of zero, which occurs when the two input feature
vectors are identical. The input to vector difference norm
does not need to be normalized to unit vectors. Therefore, Lp
norms are best suited for cases where the feature elements
are bounded. For example, we use Lp norms to compute the
similarities between different applications’ branch taken and
not-taken execution frequencies. We evaluated Lp norms for
p = {0,1,2}. L0-norm corresponds to the total number of
nonzero elements in a vector. In our analysis, it represents the
number of different elements in the feature vector. L1-norm is
also known as Manhattan distance, which sums the absolute
difference in each component of the feature. L2-norm is also
known as Euclidean distance. Compared to L1-norm, L2-norm
shows tolerance toward small discrepancies. Also, L2-norm
penalizes relatively large differences between features.

2.2 Is the kernel a bottleneck for modern data
center applications?

We start our characterization of the Linux kernel by measuring
what percentage of the overall execution time for data center
applications is spent in the kernel. Specifically, we estimate
the percentages of overall CPU cycles, executed instructions,
I-cache misses, and I-TLB misses that originate from the
Linux kernel for each application. Table 2 shows the results.

As shown in Table 2, these data center applications spend,
on average, 61% of their total CPU cycles and 57% of all
executed instructions in the kernel. Additionally, on average,
61% of all I-cache misses and 46% of all I-TLB misses origi-
nate from the kernel for these 8 applications. Therefore, we
conclude that the Linux kernel can be a significant hardware
performance bottleneck for data center applications.

2.3 How does the kernel’s control-flow behav-
ior vary across different applications?

Since the kernel is responsible for a large fraction of the over-
all execution time for data center applications, optimizing the
end-to-end performance for these applications must aim to
improve the performance of the Linux kernel. To improve the
Linux kernel’s performance, we mainly consider compiler-
based profile-guided optimizations. These profile-guided opti-
mizations change the code layout of a program via basic-
block reordering, function reordering, and function splitting
based on the program’s execution profile. Such profile-guided
optimizations provide significant performance benefits for a
program if the profile used for optimization matches closely
with the execution profile for the common case. Therefore, we
examine how the Linux kernel’s profile varies across different
data center applications in this subsection.

Function reordering and function splitting primarily lever-
age the execution frequencies of different functions whereas
basic-block reordering uses the execution frequencies of dif-
ferent branch instructions along with the taken and not-taken
frequencies of different conditional branch instructions. Con-
sequently, we study the similarity and variation in kernel
profiles for different applications based on execution frequen-
cies for all functions and branch instructions along with taken
and not-taken frequencies for conditional branch instructions.
Function execution frequencies. We first study the variation
in kernel profiles based on all function execution frequencies
in the Linux kernel. For each application, we create a feature
vector of function frequencies as described in §2.1. Then, we
normalize these feature vectors so that each of these vectors
has a unit norm. Next, we calculate the cosine similarity
among different feature vectors from different data center
applications and show the confusion matrix in Fig. 1.

As shown in Fig. 1, almost all these data center applica-
tions show close resemblance with each other based on their
kernel function usage. Only LevelDB and RocksDB notice-
ably differ from other applications. however, the minimum
similarity score is only 0.37. This suggests that even for appli-
cations with the widest function usage diversity, there is still a
37% match among their profiles. Consequently, profile-guided
function reordering and splitting for the kernel should provide
performance benefits across different applications based on
these execution frequencies.
Branch instruction execution frequencies. Next, we exam-
ine kernel profiles for these data center applications based
on the execution frequencies of different branch instructions.
Similar to the execution frequencies of functions, we generate
a feature vector for each application based on the execution
frequencies of all branch instructions from the Linux kernel.
After normalizing these feature vectors to have a unit norm,
we measure the cosine similarity among different feature vec-
tors of different applications and show the confusion matrix
in Fig. 2.



Figure 1: Confusion matrix using cosine similarities for differ-
ent data center applications based on the Linux kernel’s func-
tion execution frequencies: apart from LevelDB and RocksDB,
all other applications exhibit close similarity in their kernel
function usage.

As shown in Fig. 2, we observe that kernel profiles for these
applications, with the exception of PostgreSQL, are similar
based on branch instruction execution frequency. However,
even for PostgreSQL, the minimum score for the measure of
similarity is 0.41 suggesting that there is still a 41% match
in branch instruction frequency for these applications. Apart
from execution frequencies of branch instructions, profile-
guided basic-block reordering also depends on the taken
and non-taken frequencies of conditional branch instructions.
Hence, we next investigate the taken and not-taken frequen-
cies of conditional branch instructions from the Linux kernel
for these applications.

Taken and not-taken frequencies of conditional branch
instructions from the kernel. Conditional branch instruc-
tions have two possible directions: (1) the taken direction
or (2) the not-taken or fall-through direction. Since the sum
of the taken and not-taken frequency for a given branch is
equal to the total execution frequency, we represent taken and
not-taken frequencies simultaneously with a single parameter,
the taken probability. We measure the taken probability for
a given conditional branch as the ratio of the branch’s taken
frequency divided by the branch’s total execution frequency.

To compare the Linux kernel’s profile across different data
center applications, we create a feature vector for each appli-
cation based on taken probabilities for all conditional branch
instructions from the kernel. As each entry to these feature
vectors ranges from zero to one, we measure the variation
among these feature vectors using Lp-norms, as described
in §2.1. We show the corresponding confusion matrix using
Lp-norms for different data center applications in Fig. 3.

Figure 2: Confusion matrix using cosine similarities for dif-
ferent data center applications based on the Linux kernel’s
branch execution frequencies: apart from PostgreSQL, all
other applications exhibit close similarity in their usage of
branch instructions from the kernel.

As shown in Fig. 3, the L0-norm and L1-norm values are
small across different data center applications, which high-
lights that these applications do not exhibit wide diversity
among their usage of conditional branch instructions within
the kernel. Specifically, the maximum L0-norm value is 0.33
while the maximum L1-norm value is only 0.16. Additionally,
L2-norm values across all applications are always smaller
than 0.005, and hence, we do not include the corresponding
confusion matrix in this paper.

Since taken/not-taken frequencies of all conditional branch
instructions along with execution frequencies of all branch
instructions exhibit similar behavior across different applica-
tions, we conclude that profile-guided basic-block reordering
for the kernel using only one application’s profile will still
provide a substantial performance benefit for a different appli-
cation. Next, we describe how we combine kernel profiles
from all applications to generate a universal profile that can
achieve significant performance benefits for all applications.

3 Implementation

We leverage LLVM’s profile tools to generate a universal
profile and clang [1] to optimize the Linux kernel using the
universal profile. To generate the universal profile, we com-
bine kernel profiles from different data center applications
using the merge option of the tool, llvm-profdata. While
merging the kernel profiles for different data center applica-
tions, we assign equal weights to each application’s profile.



Figure 3: Confusion matrix using L0-norm (top) and L1-norm
(bottom) for different data center applications based on taken
and not-taken frequencies for all branch instructions from the
Linux kernel: data center applications show little variation in
their usage of kernel conditional branch instructions.

4 Evaluation

In this section, we evaluate the effectiveness of optimizing
the Linux kernel using the universal profile that we gener-
ate by combining kernel profiles from different data center
applications. Specifically, we use clang [1]’s profile-guided
optimizations on the Linux kernel and measure the end-to-
end speedup (improvement in throughput) for our data cen-
ter applications. For comparison, we also create application-
specific kernels for each application and measure each appli-
cation’s end-to-end speedup using this application-specific
Linux kernel. We show the speedup for the universal (merged)
profile and application-specific profile compared to a non-
optimized (default) kernel for each application in Fig. 4.

As shown in Fig. 4, the universal profile-guided optimiza-
tions achieve significant performance speedup for almost all

Figure 4: End-to-end speedup provided by profile-guided
Linux kernel optimizations for different data center applica-
tions: Linux kernel optimizations using the universal (merged)
profile provide comparable performance to kernel optimiza-
tions using application-specific profiles.

of these data center applications apart from PostgreSQL. For
PostgreSQL, optimizations using the universal profile only
provide a 1.59% average speedup since the branch instruction
execution frequencies from the kernel for PostgreSQL differ
from their execution frequencies for the remaining applica-
tions. On average, the universal profile-guided optimizations
achieve an average end-to-end speedup of 8.02% across all
applications, which is close to the average speedup of 10.03%
that the application-specific profiles provide.

5 Related Work

Profile-guided optimizations of data center applications.
Large instruction footprints of modern data center applica-
tions make a compelling case for optimizing these applica-
tions in a profile-guided manner [8, 9, 12, 15, 30]. Conse-
quently, a plethora of recent techniques [11, 13, 17, 19–26,
28, 31] optimize the performance of data center applications
by applying basic-block reordering, function reordering, and
function splitting in a profile-guided manner. Unfortunately,
all of these widely-deployed techniques only operate on data
center applications themselves and have largely neglected the
performance implications of the kernel. Hence, in this work,
we investigate the performance potential of profile-guided ker-
nel optimizations and show that such optimizations provide
notable speedup for widely-used data center applications.
Profile-guided optimizations of Linux kernel. Previous
work for Linux kernel PGO focuses on creating application-
specific kernels and re-writing the kernel binary [27, 29, 43–
45]. The main limitation of these works is their focus on
the implementation of kernel PGO and the feasibility of



application-specific kernels. Our work instead focuses on
analyzing kernel usage across different applications and gen-
erating a single universal profile to optimize all of these appli-
cations. Previous work has also investigated binary-level tech-
niques to reduce a kernel’s memory footprint for specific
applications [10, 18]. Our work focuses solely on improving
performance (i.e., application latency and throughput) through
traditional compiler-based optimizations.
Measuring profile similarity. Prior works [11, 14, 31, 46] on
measuring profile similarity and diversity primarily investi-
gate how execution profiles vary across different inputs or
versions of an application and focus on each application on
its own. Instead, our work leverages state-of-the-art measures
of similarity metrics to compare kernel profiles across differ-
ent applications and focuses on the operating system kernel,
which is a unique program that supports many diverse work-
loads.

6 Conclusion

Modern data center applications lose significant performance
potential due to frequent I-cache and I-TLB misses. In this
paper, we showed that a large fraction of these misses emerge
from the Linux kernel. Consequently, we investigated the
implications of profile-guided kernel optimizations for these
applications and observed that kernel profiles exhibit close
similarities across different data center applications. Based on
this insight, we combined the kernel profiles from different
applications to generate a universal profile. We then opti-
mized the Linux kernel using compiler-based profile-guided
optimizations with this profile to improve application perfor-
mance. In our evaluation, Linux kernel optimizations using
the universal profile achieved an average end-to-end speedup
of 8.02% for 8 widely-used data center applications.
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