
Huron: Hybrid False Sharing Detection and Repair

Tanvir Ahmed Khan
University of Michigan, USA

takh@umich.edu

Yifan Zhao
University of Michigan, USA

evanzhao@umich.edu

Gilles Pokam
Intel Corporation, USA

gilles.a.pokam@intel.com

Barzan Mozafari
University of Michigan, USA

mozafari@umich.edu

Baris Kasikci
University of Michigan, USA

barisk@umich.edu

Abstract

Writing efficient multithreaded code that can leverage the
full parallelism of underlying hardware is difficult. A key
impediment is insidious cache contention issues, such as false
sharing. False sharing occurs when multiple threads from
different cores access disjoint portions of the same cache
line, causing it to go back and forth between the caches of
different cores and leading to substantial slowdown.

Alas, existing techniques for detecting and repairing false
sharing have limitations. On the one hand, in-house (i.e.,
offline) techniques are limited to situations where falsely-
shared data can be determined statically, and are otherwise
inaccurate. On the other hand, in-production (i.e., run-time)
techniques incur considerable overhead, as they constantly
monitor a program to detect false sharing. In-production re-
pair techniques are also limited by the types of modifications
they can perform on the fly, and are therefore less effective.

We present Huron, a hybrid in-house/in-production false
sharing detection and repair system. Huron detects and re-
pairs as much false sharing as it can in-house, and relies
on its lightweight in-production mechanism for remaining
cases. The key idea behind Huron’s in-house false sharing
repair is to group together data that is accessed by the same
set of threads, to shift falsely-shared data to different cache
lines. Huron’s in-house repair technique can generalize to
previously-unobserved inputs. Our evaluation shows that
Huron can detect more false sharing bugs than all state-
of-the-art techniques, and with a lower overhead. Huron
improves runtime performance by 3.82× on average (up to
11×), which is 2.11-2.27× better than the state of the art.

Tanvir Ahmed Khan and Yifan Zhao are co-lead authors.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00

https://doi.org/10.1145/3314221.3314644

CCS Concepts · Software and its engineering → Soft-

ware performance; Multithreading.

Keywords False sharing, Performance optimization

ACM Reference Format:

Tanvir Ahmed Khan, Yifan Zhao, Gilles Pokam, Barzan Mozafari,

and Baris Kasikci. 2019. Huron: Hybrid False Sharing Detection

and Repair. In Proceedings of the 40th ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI ’19), June

22ś26, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3314221.3314644

1 Introduction

Over the past decade, pervasiveness of parallel hardware has
boosted opportunities for improving performance via concur-
rent software. Today, almost every computing platformÐdata
centers, personal computers, mobile phonesÐrelies heavily
on multithreading to best utilize the underlying hardware
parallelism [1, 4, 12, 20, 45].

Alas, writing efficient, highly-multithreaded code is a chal-
lengeÐsubtle mistakes can drastically slow down perfor-
mance. One prominent cause of this is cache contention, and
true and false sharing are two of the most common reasons
of cache contention [25]. True sharing occurs when multiple
threads on different cores access overlapping bytes on the
same cache line (e.g., multiple threads accessing a shared
lock object). False sharing, on the other hand, occurs when
multiple threads access disjoint bytes on the same cache
line [75]. In both cases, to maintain cache coherency [68],
concurrent accesses will cause the cache line to go back
and forth between the caches of different processor cores,
thereby hurting performance.
In many cases, true sharing is intentional, i.e., it may not

be possible to prevent threads from sharing data on the same
cache line. For example, developers intentionally share data
among threads in order to implement a necessary functional-
ity, such as a lock in a threading library or reference counters
in a language runtime (e.g., Java’s Virtual Machine). Even
when unintentional, developers can use existing tools (e.g.,
profilers [19, 31, 50, 73]) to detect and fix true sharing.
False sharing, on the other hand, is more insidious. De-

velopers may not be aware that threads accessing different
variables at the source code level will end up on the same

473

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3314221.3314644
https://doi.org/10.1145/3314221.3314644

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Khan, Zhao, Pokam, Mozafari, & Kasikci

cache line at runtime. Therefore, false sharing is almost in-
variably unintentional: it is challenging for developers to
determine the presence of false sharing while programming.
Due to the challenging nature of false sharingÐand its

devastating impact on performance (e.g., over 10× slow-
down [8, 42])Ðthere has been a lot of recent interest in au-
tomatically detecting and repairing it. Existing techniques
for false sharing detection rely on static analysis [13, 30, 33],
runtime monitoring [47, 75], compiler instrumentation [49],
or hardware performance counters [25, 52]. In contrast, false
sharing repair techniques rely on operating system sup-
port [21, 47], managed language runtime support [25], or
custom in-memory data structures [52].

Alas, existing false sharing detection and repair techniques
have limitations. In-house approaches [13, 33] use static anal-
ysis and compiler transformations to detect and repair false
sharing, respectively. These techniques are therefore limited
to eliminating false sharing for programs where the size and
location of data elements can be determined statically. As a
result, more recent false sharing detection and repair tech-
niques work only in production. In-production approaches
overcome the challenges of in-house techniques, but at the
expense of suboptimal speedups [52], large runtime and
memory overheads [21, 47, 49], narrow applicability [21, 25],
and even memory inconsistency [47] (see ğ6 for details).
In this paper, we show that the common perception that

in-house mechanisms are limited in terms of the types of
programs for which they can detect and repair false shar-
ing [47] is not necessarily correct. We show that it is possible
to determine the effect of different program inputs on a false
sharing bug, even after observing the bug for a single input.
Relying on the above observation, we present Huron, a

hybrid in-house/in-production false sharing detection and
repair system. For all false sharing bugs that can be detected
in-house, Huron’s novel algorithm generates a repair that
can, in many cases, generalize to different program inputs.
For false sharing instances that cannot be detected in-house,
we leverage an existing in-production false sharing detec-
tion and repair mechanism [21], which we improved to only
detect previously-unobserved false sharing instances with
greater efficiency (i.e., by caching the already-detected ones).
Our insight is that, in many cases, developers will have in-
house test cases that exercise the most performance-critical
paths of their programs, which will allow our in-house false
sharing detection and repair to be effective.
Performing false sharing detection and repair in house

allows us to devise a novel repair mechanism that works by
transforming the memory layout, which would have been
otherwise too expensive to use in production. The key insight
behind our in-house false sharing repair is to group together

data that is accessed by the same set of threads, and thereby

shift falsely-shared data to different cache lines (i.e., eliminate

false sharing).

Despite repairing most false sharing in-house, we empiri-
cally show that, in many cases, Huron’s repairs generalize
to different inputs (e.g., configuration parameters, thread
counts, etc.), because the relation between a program’s input
and false sharing can usually be determined accurately using
Huron’s conservative static analysis. Huron can then use
this relation to generate a fix that generalizes to any input.

In addition to eliminating false sharing, Huron’s memory
grouping improves spatial locality.
In summary, we make the following contributions:
• We present Huron, a hybrid in-house/in-production false
sharing detection and repair technique. Huron’s in-house
technique uses a novel approach to eliminate false sharing
by grouping together memory that is accessed by the same
set of threads.
• We show that Huron can generate false sharing fixes that
generalize to different program inputs.
• We show that Huron eliminates false sharing using bench-
marks and real programs, delivering up to 11× (3.82× on
average) speedup. Compared to the state of the art [21,
47], Huron delivers up to 8× (2.11-2.27× average) larger
speedup, on average 33.33% higher accuracy, and up to
197-377× (on average 27-59×) lower memory overhead.

2 Background and Challenges

In this section, we first discuss the key challenges faced by
false sharing detection and repair techniques.We then briefly
describe how Huron addresses each of these challenges.

2.1 Effectiveness

The effectiveness of a false sharing repair1 mechanism is the
extent to which it can improve a program’s performance.
In-production false sharing repair mechanisms modify

the executable on the fly [21, 25, 47, 52], meaning they are
limited in the extent of modifications they can perform and
are less effective than in-house repair, as we show in ğ5.4.
These techniques reduce false sharing by either splitting the
falsely-shared data between different pages [21, 47] or by
using special runtime support [52].
False sharing can be repaired more effectively if one can

surgically modify a program’s code and data at a fine granu-
larity. A common and effective repair technique is to simply
pad a cache line with dummy data in order to move the
falsely-shared data to separate cache lines [69]. In fact, some
in-production repair approches also use this technique [25].
However, these techniques are only applicable to managed
languages (e.g., Java), where programs pause at well-defined
points (e.g., garbage collection), thereby allowing for the
code and memory layout to be restructured efficiently.
Even when existing approaches are able to repair false

sharing, we show in ğ5.4 that, in many cases, they are much

1Since detection is a binary prediction, the effectiveness of a detection

mechanism is the same thing as its accuracy.

474

Huron: Hybrid False Sharing Detection and Repair PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

less effective than Huron (up to 11×). In particular, by per-
forming most of the false sharing repair in house, Huron
achieves more speedup. Finally, since Huron does not rely
on dummy padding, it can even outperform manual false
sharing repair in many cases (7 out of 9, as we show in ğ5.4).

2.2 Efficiency

A false sharing detection and repair mechanism is considered
efficient if its runtime performance overhead is low.
In-production techniques monitor the program for false

sharing instances to fix them on the fly, thus, incurring con-
siderable runtime overhead (e.g., up to 11× [47]).
The efficiency of in-production false sharing detection

techniques is further hindered by the fact that different pro-
gram inputs may require detecting different instances of the
same false sharing bug and generating a new repair strategy,
both of which are costly. Execution #1 in Fig. 1 has a false
sharing bug where threads t1 and t2 each access 60 bytes of
data, and therefore share the last 4 bytes of cache line #1.
Execution #2 shows that this false sharing instance can be
repaired by padding each cache line with 4 bytes of data,
which will force t1 and t2 to access their data on separate
cache lines. On the other hand, in Execution #3, which is the
result of a different input, each of the two threads accesses
30 bytes of disjoint data residing on a single cache line of 64
bytes. However, the 4-byte padding is not enough to shift the
last 30 bytes to a separate cache line. Therefore, fixing the
false sharing in this instance will require a 34-byte padding
(or an additional 30 bytes), as shown in Execution #4.

To alleviate the overhead of in-production false sharing
detection and repair, Huron performs asmuch of its detection
and repair in house as possible, e.g., by using test cases, etc.
Consequently, Huron’s in-production detection and repair
is triggered less frequently than previous techniques and
incurs less overhead (see ğ5.9). Furthermore, in many cases,
Huron can generate an input-independent repair strategy
that generalizes to multiple inputs (3.4).

2.3 Accuracy

The accuracy of a detection technique is the extent to which
it can detect correct instances of false sharing (true positives)
without flagging incorrect instances (false positives).

In theory, it is possible to build an in-production false
sharing detector that does not suffer from false positives.
However, since this is costly, all state-of-the-art false sharing
detection strategies resort to sampling hardware events [21,
25] that are indicative of false sharing (e.g., Intel HITM [18])
or use approximate algorithms [47].
By combining in-house and in-production false sharing

detection, Huron achieves the best of both worlds. As shown
in ğ5, Huron is not only more accurate than state-of-the-art
detection approaches, but it is also more efficient.

padding

False sharing No false sharing

I
n
p
u
t

#
1

I
n
p
u
t

#
2

0

60

t1

t2

array

64

cache

line1

cache

line2

128

0

64

t1

t2

array

cache

line1

cache

line2

128

4 byte

pad

Execution #1 Execution #2

0

30

60

t1

t2

array

64

cache

line1

0

30

64

t1

t2

array

cache

line1

cache

line2
94

128

34 byte

pad

34 byte

pad

Execution #3 Execution #4

Figure 1. Input-dependent false sharing repair

3 Design

In this section, we describe the design of Huron, our hybrid
in-house/in-production false sharing detection and repair
system. Huron first detects and repairs false sharing in house
using developer test cases. For false sharing instances that
may not be detected or fixed in house (e.g., due to thread non-
determinism or change of input), Huron uses its optimized
version of an existing in-production technique [21].

Fig. 2 shows various components in Huron’s design. Steps
1 ś 4 occur in-house. In step 1 (ğ3.1), the source code of
the target program is fed into an instrumentation pass, re-
sponsible for instrumenting the program with false sharing
detection code. In step 2 (ğ3.2), Huron’s in-house detection
component detects false sharing using the instrumentation
from the previous step. In step 3 , Huron saves metadata (e.g.,
program counter etc.) regarding the detected false sharing
instances in a cache that is used to speed up in-production de-
tection and repair. In step 4 (ğ3.3), the detected false sharing
instances are used to perform memory layout transforma-
tions. The repair mechanism in this step groups together data
that is accessed by the same set of threads, while separating
falsely-shared data into different cache lines. Another key
sub-step of the memory layout transformation is a special
compiler pass (ğ3.4) that produces a generic false sharing
repair strategy that works for multiple program inputs.

Steps 5 ś 8 (ğ3.5) occur in production. In step 5 , the pro-
gram is deployed, while Huron performs its in-production
false sharing detection. Moreover, Huron uses a cache of
already-detected (in-house) false sharing instances ś in step
6 ś to reduce overhead. When Huron detects a new false

475

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Khan, Zhao, Pokam, Mozafari, & Kasikci

sharing instance in production, it fixes it by separating falsely-
shared data into different pages using an existing tool [21] in
step 7 . Finally, in step 8 , Huron saves the false sharing in-
stances it detected in production, so that they can be repaired
more effectively using the memory layout transformations
the next time the program is built and deployed.

In-House
False Sharing

Detection

In-Production
False Sharing

Detection

Offline (in house)

Cache

Source
Code

1 2

4

101100
010110
100101

101011
010110
010101

5

6 In-Production
False Sharing

Repair

7

Online (in production)

8

Instrumentation
Pass

Memory Layout
Transformation Pass

Input Independent
Repair Pass

3

Figure 2. High-level design of Huron

3.1 Instrumentation Pass

Huron uses a compiler pass to instrument memory access
and allocation instructions. Similar to all prior work, Huron’s
detection is geared towards detecting false sharing of global
data and dynamically-allocated data. Huron does notmonitor
stack data for false sharing. While it is possibleśalthough
considered poor practiceśfor threads to share data through
the stack, we have not observed this in practice.

Huron instruments all heap and global memory accesses,
which is necessary for accurate detection. These include load
and store instructions (including atomic load/store) as well
as atomic exchange instructions. At runtime, the instrumen-
tation logs the target size and the memory address of the
load/store as well as the program counter of the instruction.
Huron also instruments all memory allocation instruc-

tions in order to collect the information necessary for gener-
ating false sharing fixes that generalize beyond the inputs
observed in house. In particular, Huron’s instrumentation
inserts external function calls that log the program counter
of the memory allocation instructions, as well as the start
and end addresses of the allocated memory.

3.2 In-House False Sharing Detection

To ensure accurate detection, for each thread, Huron tracks
how many bytes of data are accessed on which cache lines.

If multiple threads access disjoint data on the same cache
line at any point, Huron flags this as a false sharing instance.

1 struct global_t {
2 char *inputs[N_THREAD+1];
3 int red[N_THREAD][256];
4 int blue[N_THREAD][256];
5 };
6 global_t *global;
7 main(...) {
8 global = malloc(sizeof(global_t));
9 for(int i=0;i<N_THREAD;i++) {

10 for(int j=0;j<256;j++) {
11 global->red[i][j]=0;//Location 1
12 global->blue[i][j]=0;//Location 2
13 }
14 }
15 }
16 void calc_hist(int tid) {
17 char *begin=global->inputs[tid];
18 char *end=global->inputs[tid+1];
19 for (char *p=begin; p<end; p+=2) {
20 global->red[tid][*p]++;//Location 3
21 global->blue[tid][*(p+1)]++;//Location 4
22 }
23 }

Figure 3. Listing with false sharing that occurs when multi-
ple threads execute the lines 20 and 21 in calc_hist.

24

1048

2072

3096

0 inputs

4120

2048

2112

2072

Cache line start

Cache line end

0

24

64

Incremented by thread 1

Incremented by thread 2

Memory layout
of an object of
type global_t

Falsely shared cache line red[0]

blue[0]

red[1]

blue[1]

Figure 4. Memory layout of global_t data structure de-
scribed in Fig. 3 and how the program suffers from false
sharing due to thread 1 and thread 2 both incrementing non-
overlapping values on the same cache line.

The listing in Fig. 3 shows a simplified exampleśadapted
from histogram [63]śthat suffers from false sharing when
multiple threads spawned from main (thread creation code
omitted for brevity) concurrently execute calc_hist, which
increments thread-specific counters for pixel values, red and
blue (green omitted for brevity). Since pixel values vary from
0 to 255, there are 256 counters (of type int) for each color.
Each thread executing the function iterates over a portion
of the image pixels (specified by pointers begin and end) to

476

Huron: Hybrid False Sharing Detection and Repair PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

retrieve and increment each counter. Fig. 4 shows the mem-
ory layout of an object of type global_t for a two-thread
execution, i.e., N_THREAD = 2. The inputs array is aligned at
the beginning of a cache line and spans 24 bytes. Follow-
ing inputs are the four subarrays red[0], red[1], blue[0],
blue[1]. The subarrays red[0] and blue[0] are accessed by
thread 1 and the subarrays red[1] and blue[1] are accessed
by thread 2. The dashed boxes denote the cache lines where
subarrays both reside and cause false sharing when thread 1
and thread 2 access the lines from different cores.
To detect false sharing in house, Huron relies on testing

workloads (e.g., unit tests, integration test, stress tests). The
rationale behind this design decision is that most of the
time, developers already have test cases that cover the most
performance-critical paths of their programs, which would
allow Huron to detect and repair most false sharing bugs
in-house. Those that are missed in house are detected and
repaired by Huron in production (see ğ3.5).
During in-house false sharing detection, Huron records

and computes certain information to account for dynamic
program behaviors that vary across different runs in pro-
duction. For instance, falsely-shared data will likely reside
in different memory locations each time the program is run
(e.g., due to dynamic memory allocation [14] and ASLR [66]).
Therefore, Huron needs to uniquely identify the location
of false sharing during the detection phase to be able to re-
pair it during any in-production run. Furthermore, Huron
needs to uniquely identify the instructions involved in false
sharing in order to modify their access offsets during repair.
Finally, since Huron repairs false sharing by grouping to-
gether memory locations that are accessed by the same set
of threads, it needs to track which threads access which part
of the memory. To achieve these goals, Huron tracks and
computes the following information:
1. A unique identifier of each program location accessing

memory. This is a 3-tuple (file name, line number,

execution count), which uniquely identifies the location
even if it is inside multiple loops. For brevity, in Fig. 5,
step 1, we show the unique program locations as 1, 2, 3, 4
which correspond to lines 11, 12, 20, and 21 in Fig. 3.

2. A unique identifier of each memory region, defined as a
combination of a memory allocation site and an access off-
set range. The allocation site is a 3-tuple (file name, line

number, execution count) that uniquely identifies the al-
location operation. In the example of Fig. 3, this would be
(histogram.c, line 8, 0). Huron converts the memory
addresses accessed by each instruction into a range of
offsets with respect to the allocation site. These offsets are
calculated by subtracting the base address returned by the
memory allocator from the accessed memory address. In
Fig. 5, step 1 , we omit the allocation site tuple and only
show the memory offset ranges for brevity.

3. A thread ID, as shown in the last column of step 1 , Fig. 5,
where thread 0 is the main thread, and threads 1 and 2 are
the worker threads executing calc_hist from Fig. 3.
These three pieces of information are used to produce the

thread access bitmap (i.e., the set of thread accesses) of each
memory region (step 2 , Fig. 3). Using this bitmap, Huron
identifies and repairs false sharing (see ğ3.3).
Effect of DetectionWindow Granularity. Huron consid-
ers the entire execution of a program as a single time window
when detecting false sharing instances. It is therefore possi-
ble for Huron to miss certain instances of false sharing (i.e.,
incur false negatives). To see why, consider two disjoint time
windows w1 and w2, where the entire execution runs for
w1 +w2. Also consider two threads t1 and t2 accessing a 64
byte cache line l . Let’s assume that in time windoww1, t1 ac-
cesses the first 32 bytes of l , and t2 accesses the last 32 bytes.
Therefore inw1, t1 and t2 are involved in false sharing. Now
let’s assume that in time windoww2, t1 accesses the last 32
bytes of l , and t2 accesses the first 32 bytes. Similarly, inw2, t1
and t2 are involved in false sharing. However, if we consider
the entire execution window w1 +w2, since both t1 and t2
access the first and last 32 bytes of l , they are truly sharing
the cache line, hence there is no false sharing. Although it
might seem useful to consider a fine-grained time window
based on this example, this approach also suffers from false
negatives, because it may not be possible to observe accesses
involved in false sharing using a short window. Huron allows
a developer to specify a detection time window. In ğ5.11, we
show that using the entire exection as a single time window
for false sharing detection is more effective.

3.3 Memory Layout Transformation Pass

We now describe how Huron repairs false sharing, assum-
ing that program inputs and thread counts do not alter the
false sharing behavior. We describe how Huron accounts for
different inputs and thread counts in the next section.
Algorithm 1 describes a simplified version of Huron’s

memory layout transformation technique. The function Tra-

nsform-Layout takes a list of memory bytes M as input.
Each bytem ∈ M has an attributem.bitmap denoting the
IDs of threads which accessed this memory byte during in-
house false sharing detection. The algorithm populates Q ,
which maps a thread ID bitmap (i.e., a set of thread accesses)
to a list of all the memory bytes accessed by the threads
described via the bitmap (Line 1-5). For each memory bytem
accessed by the same set of threads b, the algorithm sequen-
tially assigns an offset (1 byte) in memory. The hashmap T
keeps track of each new offset. After all memory bytesm
with the thread access bitmap b are assigned an offset, the
algorithm computes the new offset i to be the next multiple
of cache line size CLSIZE (Line 13). This ensures that the
next byte with a different thread access bitmap will be placed
in a different cache line. Since false sharing occurs among

477

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Khan, Zhao, Pokam, Mozafari, & Kasikci

Program
location

Memory
region

Thread
ID

1
[24-1048)

0
[1048-2072)

2
[2072-3096)

0
[3096-4120)

3
[24-1048) 1

[1048-2072) 2

4
[2072-3096) 1

[3096-4120) 2

Memory
region

Thread
2

Thread
1

Thread
0

[24-1048) 0 1 1

[1048-2072) 1 0 1

[2072-3096) 0 1 1

[3096-4120) 1 0 1

Group
Thread
bitmap

Memory region

1 011 [24-1048), [2072-3096)

2 101 [1048-2072), [3096-4120)

Start and end of memory
region groups

Transformed start and end
of memory region groups

[24-1048), [2072-3096) [24-2072)

[1048-2072), [3096-4120) [2112-4160)

Program
location

Thread
ID

Memory
region

Transformed
memory
region

Offset

1 0
[24-1048) [24-1048) 0

[1048-2072) [2112-3136) 1064

2 0
[2072-3096) [1048-2072) -1024

[3096-4120) [3136-4160) 40

3
1 [24-1048) [24-1048) 0

2 [1048-2072) [2112-3136) 1064

4
1 [2072-3096) [1048-2072) -1024

2 [3096-4120) [3136-4160) 40

1

2

3

4

R
eq

u
ir

es

lo
o

p

u
n

ro
ll

in
g

R
eq

u
ir

es
fu

n
ct

io
n

cl

o
n

in
g

falsely shared cache line

24

1048

2072

3096

4120

24

1048

2072

3136

4160

2112

5

padding

Figure 5. In-house false sharing repair via memory layout transformations for the example in Fig. 3. Memory region [x − y)
denotes bytes starting from x (inclusive) up to byte y (exclusive). For simplicity, we have omitted access to memory region
[0 − 24), i.e., variable inputs. Cache line size is 64 bytes.

memory accesses with different corresponding bitmaps, the
algorithm eliminates any potential false sharing.

Algorithm 1 False sharing repair via memory layout trans-
formation

Transform-Layout(M)

1: Q ← Hashtable()
2: for eachm ∈ M do

3: if Q[m.bitmap] = NIL then

4: Q[m.bitmap] ← List()

5: Q[m.bitmap].insert(m)

6: i ← 0

7: T ← Hashtable()
8: for each b ∈ Q .keys do

9: for eachm ∈ Q[b] do

10: T [m] ← i

11: i ← i + 1

12: if i%CLSIZE , 0 then

13: i ← i + (CLSIZE −(i%CLSIZE))

14: return T

For example, step 2 in Fig. 5 shows how the threads from
the example in Fig. 3 access various memory regions. The
thread access bitmap in step 2 shows where false sharing
occurs with dashed boxes. Since memory regions [24-1048)
and [1048-2072) share a cache line between offsets [1024-
1098), and are accessed by different threads (i.e, with differ-
ent thread bitmaps, where 011 , 101), Huron detects false
sharing. Huron then groups together memory regions with
the same thread access bitmap as shown in step 3 . Finally,
Huron restructures the memory layout by placing memory
regions in consecutive cache lines, as shown in step 4 .
It is still possible for false sharing to occur between the

end of a group of memory regions and the start of the next
group. For instance, in Fig. 5, step 4 , since the transformed
groups share a cache line, Huron inserts 40 bytes of padding
between the ranges [24-2072) and [2112-4160). As opposed
to manual techniques that introduce dummy padding, Huron
uses existing data in the program (e.g., from the heap or the
stack), thereby outperforming manual false sharing repair
in most cases, as we show in ğ5.3.

478

Huron: Hybrid False Sharing Detection and Repair PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

Then, memory layout transformation updates instructions
to access memory in the new layout. Huron uses two tech-
niques for this in step 5 : (1) loop unrolling: For some program
locations, Huron needs to insert different memory access
offsets for instructions for different iterations of a loop. For
instance, the offsets that Huron needs to insert for program
location 1 in Fig. 3 are 0 (iteration, i=0) and 1064 (iteration,
i=1). (2) function cloning: For some program locations, Huron
needs to add different offsets for different threads (example,
location 3 and 4 in Fig. 5). Hence, Huron clones the function
containing the program location and adds different offsets
for each clone. For instance, calc_hist function contains the
program location 3 where the offsets are 0 (Thread 1) and
1064 (Thread 2). As we explain in ğ3.4, Huron can adjust the
offsets to account for thread counts in different executions.

Huron has to ensure correct and unmodified memory ac-
cess semantics for the program after memory layout trans-
formations. For this, Huron uses a complete, interprocedural,
inclusion-based pointer analysis [2] to determine all the
instructions that can access the modified layout. Huron in-
struments these instructions to (1) check whether they are
accessing the new layout at runtime, and if so, (2) adjust the
memory access offsets of the instructions accordingly. Alas,
this analysis can have false positives, i.e., instructions that
Huron incorrectly considers as accessing the new layout. A
large number of false positives will result in a large number
of runtime checks, which might nullify Huron’s performance
improvements. To alleviate this, Huron only fixes false shar-
ing if an instruction that needs to be modified took less than
1% of the total execution time during detection.

3.4 Input-Independent False Sharing Repair

In many cases, Huron can generalize its false sharing repair
strategy to different program inputs after having detected
false sharing for a single input. For such repairs, Huron does
not need to rely on in-production false sharing detection
and repair. Huron performs a static range analysis pass dur-
ing layout transformation to compute the maximal range of
memory that a given instruction can access, regardless of the
program input. Consequently, Huron generates a memory
layout transformation that will work for different inputs.

Algorithm 2 describes Huron’s static range analysis, which
leverages the type system to determine whether an operand
of a memory access instruction (e.g., store, load, atomic store,
etc.) is an array type, and hence has fixed size. If that is the
case, Huron determines the maximum memory range that
the instruction can access based on its size.
FindMaxRange takes in as input an operand Ptr of a

memory access instruction. The algorithm computes and
returns the maximum range that the instruction can access
by iterating over all aliases, a, of Ptr (Line 4). If the alias, a, is
a function argument (Line 5), then all calls to this function,
f invoked with argument x, are analyzed to determine the
maximum range of Ptr (Line 9). All the ranges computed

in each function are appended to the list ranges (Line 10).
The algorithm then returns the widest possible range (Line
11). If a is found to be allocated via a malloc call (Line 12),
then the algorithm returns [S, S+R] as the maximum range.
Finally, if a is found to be derived using pointer arithmetic
(Line 14), then S is recalculated based on a’s base pointer,
base. If base is of array type, then R is multiplied by the
number of elements in the array. If Ptr is found to be none of
function argument, malloc call, or pointer arithmetic, then
the algorithm will return an empty range (i.e., the fix can not
be input-independent).

Algorithm 2 Maximal memory range detection for input-
independent repair

FindMaxRange(Ptr)

1: R ← size of element type of Ptr ▷ size of the range
2: S ← 0 ▷ starting offset of the range
3: while True do
4: a ← next alias of Ptr
5: if a is a function argument then
6: ranдes ← []
7: f ← function of a
8: for each call to function f invoked with argu-

ment x do

9: for each range (l , r) in FindMaxRange(x))
do

10: append (l + S, r + S + R) to ranдes

11: return [FindMin(ranдes), FindMax(ranдes)]

12: if a is a call to malloc then

13: return [(S, S + R)]

14: if a is derived from pointer arithmetic then
15: base ← base pointer of a
16: baseT ← type of base
17: if baseT is an array type then
18: n ← number of elements in baseT
19: R ← R × n

20: Ptr ← base

21: else

22: return []

To understand how Huron’s input range identification
pass works, consider the statement global->red[tid][*p]++;
on line 20 in Fig. 3, which increments a counter of how many
pixels of an input image have matching red values. Since it
is possible for an input to not contain all the 256 red levels, it
is possible that during in-house false sharing detection, only
red[0][30]-red[0][56] and red[0][95]-red[0][197] are ac-
cessed (assuming tid = 0).
Without input-independent false sharing repair, Huron

would only perform memory layout transformations in this
range and fail to repair false sharing for the rest of the array.
However, with input-independent analysis, Huron discovers

479

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Khan, Zhao, Pokam, Mozafari, & Kasikci

the user code can access red[0][0]-red[0][255], and gener-
ates a fix for the entire range.
If Huron statically determines a linear relationship be-

tween thread counts and the offsets in the transformed lay-
out, it will parametrize the offset to be a function of the thread
count. This allows Huron’s fixes to generalize to different
thread counts. For instance, the sub-array blue[0][256] (of
Fig 3) has a parametrized offset function (-(N_THREAD-1)*1024),
allowing the offset to be changed from (−1024) to (−2048)
when N_THREAD changes from 2 to 3.

Huron can generate input-independent false sharing re-
pair for many programs, as we show in ğ5.5. However, this
is not always possible. For example, the type information
may be lost due to excessive pointer casts, or certain ranges
may not be determined statically. In such cases, it relies on
in-production false sharing detection and repair.

3.5 In-Production False Sharing Detection and

Repair

In production, Huron deploys the program that was repaired
in house and leverages a modified version of an existing in-
production false sharing detection and repair tool, namely
TMI [21]. In a nutshell, TMI works by monitoring hardware
performance counters (i.e, HITM), which was shown in prior
work [21, 52] to be indicative of false sharing.

A surge in HITM counts triggers TMI’s false sharing de-
tection. Huron’s metadata cache of previously-detected false
sharing instances (containing program locations, memory
offsets, type of false sharing etc.) speeds detection up. We
show in ğ5.9 that Huron’s modified in-production false shar-
ing detection technique is on average 2.1× faster than TMI.
If Huron discovers a false sharing bug in production, it

uses TMI to create a temporary fix by converting threads to
processes. However, as we demonstrate in our evaluation
(ğ5), such a repairmechanismmay not be effective or efficient.
More specifically, TMI mistakenly treats true sharing as false
sharing for a number of benchmarks and moves truly-shared
data to different pages to "repair" this mistakenly-detected
(i.e., false positive) false sharing instance. Even though TMI
employs a memory-page-merging technique that ensures
such false positives do not impact correctness (ğ2.2 of [21]),
TMI’s "repair" degrades performance due to the expensive
nature of the merging technique. To overcome these chal-
lenges, Huron keeps a record of the detected false sharing
instance for in-house repair, which it will attempt next time
the program is built and deployed in production.

4 Implementation

We implemented Huron in 5,682 lines of C++ code. Huron
uses LLVM [43] for instrumentation, analysis, and memory
layout transformations. The static range analysis pass (ğ3.4)
leverages the language type system. To infer the type of an
object pointed to by a pointer, the pass traces the pointer
back to the instruction where the memory for the object was

allocated. Huron does this by recursively iterating over the
use-def chain that leads up to the allocation site. We also
integrated an existing Andersen-style alias analysis [10] into
Huron for its input-independent repair pass.
Huron’s in-house runtime tracks thread creations, mem-

ory allocations, and loads/stores using the instrumentation
code as well as a shim library that intercepts and logs mem-
ory allocation and thread creation operations (i.e., via LD_-
PRELOAD). Huron is open-sourced [24].

5 Evaluation

In this section, we answer several key questions:
• Accuracy:How accurately can Huron detect false sharing
compared to the state of the art (ğ5.2)?
• Effectiveness: Can Huron repair more false sharing bugs
than state-of-the-art tools? (ğ5.3)? How does the speedup
provided by Huron compare to manual and state-of-the-art
false sharing repair tools’ speedup (ğ5.4)? How effective
is Huron’s input-independent false sharing repair (ğ5.5)?
How the quality of in-house test cases affects Huron’s
effectiveness (ğ5.6)?
• Efficiency:What is the overhead of Huron’s repair mech-
anism compared to the state of the art (ğ5.7)? How much
overhead does Huron’s in-house detection incur (ğ5.8)?
How beneficial is Huron’s false sharing cache in speeding
up in-production detection (ğ5.9)? To what extent Huron’s
in-house component improves the efficiency of Huron’s
in-production component (ğ5.10)? How the false sharing
detection time window granularity affects Huron’s repair
speedup (ğ5.11)?

5.1 Experimental Setup

Software. All experiments are conducted in Ubuntu 16.04,
with Linux kernel version 4.4.0-127-generic using LLVM’s
front-end compiler clang 7 [43].
Hardware. We use a 32-core Intel E5-2683 machine with
128 GB of RAM.
Baselines.We compare Huron to the following state-of-the-
art techniques:
1. Sheriff [47] is an in-production framework consisting

of two tools: Sheriff-Detect and Sheriff-Protect. Sheriff-
Detect tracks updates to a cache line by multiple threads
to detect false sharing. Sheriff-Protect repairs false shar-
ing by transforming threads into processes since, unlike
threads, processes do not share the same address space.

2. TMI [21] is another in-production detection and repair
mechanism. TMI monitors the surge in hardware events
(i.e., Intel HITM) to trigger its false sharing detection al-
gorithm. TMI also uses thread-to-process transformation
to eliminate false sharing.

3. Manual is a baseline where a human programmer re-
pairs false sharing using dummy data padding to sep-
arate falsely-shared data onto different cache lines. Al-
though laborious, manual repair can provide significant

480

Huron: Hybrid False Sharing Detection and Repair PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

speedups. In fact, state-of-the-art toolsÐi.e., Sheriff and
TMIÐconsider the speedups provided by manual repair an
upper bound (which we show in ğ5.4 not to be the case).

We do not include in-house false sharing detection and repair
baselines in our evaluation, since these techniques [13, 33,
70] are targeted at specific applications and do not work
well for the range of benchmarks we look at. For example,
Jeremiassen et. al. [33] use an analysis that does not support
complex access patterns, like accessing an array using values
from another array as indices, just like histogram does.
Benchmarks. We use well-known benchmarks from the
popular Phoenix [63] and PARSEC [7] suites, which have
been used by many previous techniques for false sharing
detection and repair [21, 47ś49, 52, 59, 75]. We omit Par-
sec and Phoenix benchmarks that do not suffer from false
sharing. We verified that these benchmarks do not contain
false sharing by running all their available workloads with
Huron’s detector. We also evaluate Huron on three other
benchmarks, boost_spinlock (from C++ boost [57] library),
ref_count (adapted from Java’s reference counting imple-
mentation [22]), and histogramFS (a modified version of
histogram from the Phoenix [63] suite), which were all pre-
viously used by TMI [21]. We note that boost_spinlock and
ref_count are from real world applications.
Aside from these benchmarks, we create and use two

additional microbenchmarks, lockless_writer and locked_-

writer, that highlight the pros and cons of each false sharing
repair technique. Both microbenchmarks incur false sharing
due to multiple writer threads writing to the same cache
line. As the name implies, lockless_writer does not rely on
any synchronization instructions, while locked_writer uses
locks for synchronization between the write operations.

We also use five microbenchmarks with true sharing (i.e.,
multiple threads accessing overlapping data on the same
cache line) when evaluating Huron’s accuracy. In particular,
state-of-the-art techniques suffer from accuracy issues and
can incorrectly detect true sharing instances as false sharing
bugs. The single reader single writer, multiple readers

single writer, multiple readers multiple writers all read
and write truly shared data to/from single/multiple threads.
The atomic writers concurrently writes data from multiple
threads using C++ atomic primitives [71] and non-atomic

writers simply performs concurrent writes.
Metrics. Speedups in all the figures are relative to the exe-
cution time of the original benchmark.
We report all performance data as an average of 25 runs.

5.2 Accuracy of False Sharing Detection

Table 1 shows detection results for Huron, TMI and Sheriff.
Here, TP stands for true positive, i.e., correctly flagged real
false sharing bugs; FP stands for false positive, i.e., a true
sharing instance incorrectly flagged as a false sharing bug;
FN stands for false negative, i.e., a real false sharing bug that

a detector missed; and finally TN stands for true negative, a
correct report of non-existence of false sharing.
Table 1 also reports the accuracy of each technique as
(TP + TN)/(TP + TN + FP + FN). We acknowledge that
each technique can incur additional false negatives if the
programs were run with different inputs (e.g., besides all
the existing test cases and workloads we used). Since such
false negatives would impact all the techniques in the same
way, we report accuracy numbers based on the executions
we observe. In the observed executions, Huron’s accuracy is
100%, whereas the accuracy of TMI and Sheriff is 66.67%.

Table 1. False sharing detection in existing benchmarks.

Benchmark Sheriff
Verdict

TMI
Verdict

Huron
Verdict

histogram FN TP TP
histogramFS TP TP TP
linear_regression TP TP TP
reverse_index TP FN TP
string_match TP TP TP
lu_ncb TP TP TP
word_count TP FN TP
boost_spinlock FN TP TP
lockless_writer TP TP TP
locked_writer FN TP TP
ref_count TP TP TP
Volrend TN TN TN
radix TN TN TN
ocean TN TN TN
fft TN TN TN
canneal FP TN TN
Single reader
single writer TN FP TN

Multiple readers
single writer TN FP TN

Multiple readers
multiple writers FP FP TN

Atomic writers FP FP TN
Non-atomic
writers FP FP TN

Accuracy 66.67% 66.67% 100.00%

Out of 21 benchmarks, Sheriff and TMI mistakenly detect
true sharing as false sharing (i.e., FP) in 4 and 5 benchmarks,
respectively. Huron’s in-house detection does not incur false
positives because of its fine-grained (i.e., cache-level) full
memory tracing, as opposed to coarse-grained (e.g., page-
level) and sampling-based detection employed by Sheriff or

481

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Khan, Zhao, Pokam, Mozafari, & Kasikci

TMI. Huron’s in-production false sharing detection can tem-
porarily incur a false positive since it relies on TMI. However,
Huron eliminates this false positive for subsequent builds of
the program during its in-house detection and repair.

Out of 21 benchmarks, Sheriff and TMI fail to detect false
sharing (i.e., FN) in 3 and 2 benchmarks, respectively. Sheriff
suffers from false negatives due to reader-writer false sharing,
as its detection mechanism compares only writes by different
threads within a cache line. TMI’s false negatives are due to
inaccurate hardware events and sampling.
The detection inaccuracy of Sheriff and TMI has a sub-

stantial negative impact on the speedup they provide. We
compute speedups for all the cases where Huron correctly
detects and fixes a false sharing bug (i.e., TP) and Sheriff
and TMI miss (i.e., histogram, boost_spinlock, locked_-

writer for Sheriff and reverse_index, word_count for TMI).
For these benchmarks, Huron provides up to 5.3× and on
average 3.6× greater speedup than Sheriff, and up to 4.3×

and on average 2.6× greater speedup than TMI.

5.3 Ability to Repair False Sharing Bugs

As shown in Table 1, Huron successfully detects and elimi-
nates false sharing in all 11 benchmarks (cells marked True
PositiveśTPśin Table 1). On the other hand, not only Sheriff
detects fewer false sharing instances (i.e., 8), it is also only
able to repair 5 of them. Sheriff’s repair fails for 3 out of
8 cases (boost_spinlock, locked_writer, ref_count) because,
to preserve correctness, it is unable to repair false sharing
due to synchronization primitives. Similarly, TMI only de-
tects 9 false sharing bugs, out of which it repairs 7. The
detection fails in 2 out of the 9 cases (i.e., lockless_writer,
locked_writer), because TMI causes the program to hang.

5.4 Effectiveness Comparison to State of the Art

We compare Huron’s effectiveness (i.e., the speedup it pro-
vides) to the state of the art only for the benchmarks where
TMI and Sheriff are able to detect and repair false sharing
bugs. These are: linear_regression, histogram, histogramFS,
string_match, lu_ncb, boost_spinlock, lockless_writer,
locked_writer, and ref_count.
Fig. 6 compares the speedup that Huron and Sheriff pro-

vide. Huron’s speedup outperforms Sheriff’s by up to 7.96×
and on average 2.72×. Huron performs better than Sheriff for
benchmarks with frequent synchronization, where Sheriff’s
repair mechanism incurs high overhead.

Fig. 7 compares the speedup that Huron and TMI provide.
Huron outperforms TMI by up to 5.7× and on average 2.1×.
Similar to Sheriff, TMI’s repair is also not as efficient as
Huron’s for benchmarks with heavy synchronization.Huron
is more effective than Sheriff and TMI largely due to its novel
in-house repair technique.
Finally, we compare Huron with manual false sharing

repair. Interestingly, as shown in Fig. 8, Huron outperforms
manual repair in 7 out of 9 benchmarksśalbeit with a small

	0

	4

	8

	12

	16

lin
ea
r_
re
gr
es
sio
n

hi
st
og
ra
m

hi
st
og
ra
m
FS

st
rin
g_
m
at
ch

lu
_n
cb

bo
os
t_
sp
in
lo
ck

lo
ck
le
ss
_w
rit
er

lo
ck
ed
_w
rit
er

re
f_
co
un
t

S
p
ee
d
u
p

Sheriff 		Huron

10
.4
7

10
.5
8

1.
34
1.
38 3.
37
3.
36

1.
85
1.
92

1.
01
1.
17

0.
45 2
.3
8

1.
65 2.
35

0.
34 1.
53

1.
23

9.
78

Figure 6. Speedup comparison to Sheriff [47]. All standard
deviations are less than 1.62%.

	0

	4

	8

	12

	16

lin
ea

r_
re
gr

es
sio

n

hi
st
og

ra
m

hi
st
og

ra
m
FS

st
rin

g_
m
at
ch

lu
_n

cb

bo
os

t_
sp

in
lo
ck

re
f_
co

un
t

S
p
ee

d
u
p

TMI 		Huron

1.
02

1.
01

1.
00

0.
99 3.

53 5.
53

1.
17 2.
34

1.
25

1.
40

0.
67 1.
65

1.
92

10
.9

7

Figure 7. Speedup comparison to TMI [21]. All standard
deviations are less than 3.2%.

margin of up to 8%. This is because, as explained in ğ3.3, when
Huron needs to insert padding, it uses existing program data
rather than dummy padding that manual repair uses.

	0

	4

	8

	12

	16

lin
ea
r_
re
gr
es
sio
n

hi
st
og
ra
m

hi
st
og
ra
m
FS

st
rin
g_
m
at
ch

lu
_n
cb

bo
os
t_
sp
in
lo
ck

lo
ck
le
ss
_w
rit
er

lo
ck
ed
_w
rit
er

re
f_
co
un
t

S
p
ee
d
u
p

Manual 		Huron

10
.7
4

10
.5
8

1.
30
1.
38 3.
17
3.
36

1.
81
1.
92

1.
15
1.
17 2.
25
2.
38

2.
27
2.
35

1.
40
1.
53

10
.3
2

9.
78

Figure 8. Speedup comparison tomanual repair. All standard
deviations are less than 0.71%.

In summary, compared to the state of the art [21, 47],
Huron provides up to 8× (2.11-2.27× average) more speedup.

5.5 Effectiveness of Huron’s Input-Independent

Repair

In this section, we investigate the effectiveness of Huron in
generating input-independent repairs based on false sharing
bugs detected in house. To illustrate this, we do a detailed

482

Huron: Hybrid False Sharing Detection and Repair PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

analysis of histogram, which we have discussed previously
in detail as part of the example in Fig. 3. The histogram

benchmark experiences false sharing that is input-dependent.
Specifically, the arrays red and blue (and green in the actual
program) are involved in input-dependent false sharing.

	1

	2

	3

	4

	5

	6

small medium large false
	0

	500

	1000

	1500

	2000

S
p
ee
d
u
p

In
p
u
t	
im

ag
e

si
ze
	(
in
	M

B
)

1.16 1.16 1.21

4.79

100

399

1342 1431

Figure 9. Huron’ speedup for different input images of
histogram. Huron generates an input-independent repair for
the łsmallž input. All standard deviations are less than 3.47%.

Fig. 9 shows the speedup provided byHuron for histogram’s
various input images, namely łsmallž, łmediumž, and łlarge.ž.
In house, Huron detects false sharing using the łsmallž input
image and generates an input-independent repair that works
for the other images in production. For łsmallž, łmediumž,
and łlargež input images, the speedup varies between 1.16 −

1.21×. However, the speedup is 4.79× for the łfalsež input
image. The łfalsež image (generated from a script provided
by the authors of TMI [21]) is actually used as input for
histogramFS. The pixel values of the image trigger a lot
of false sharing and therefore Huron delivers considerable
speedup for this benchmark.

5.6 Impact of Test Cases on Effectiveness

In this section, we evaluate the impact of test cases onHuron’s
effectiveness. For this, we initially only rely on Huron’s in-
production false sharing repair component to simulate a
worst case scenario, where Huron does not have access to
any test cases in house. Using these results, Huron then re-
pairs all the false sharing instances in house. Fig. 10 shows
the results. For all the benchmarks, Huron’s in-production
detection and repair provides speedup that is about the same
as TMI’s. This is expected since Huron relies on TMI, with
the added facility to log metadata that Huron uses to sub-
sequently repair false sharing instances in house. Huron’s
in-house repair that uses the feedback it receives from its in
production component provides greater speedup than TMI.

5.7 False Sharing Repair Overhead

We now first evaluate the memory overhead of false sharing
repair for Huron, TMI, and Sheriff. We then study the effect
of these tools’ memory usage on the speedup they provide.

We compare the memory overhead of Huron to the mem-
ory overhead of Sheriff and TMI in Fig. 11 and Fig. 12, re-
spectively. The overheads in both plots are relative to the
memory usage of the unmodified binaries. Huron uses up
to 377× and on average 59× less memory than Sheriff. We

	0

	5

	10

lin
ea

r_
re
gr

es
sio

n

hi
st
og

ra
m

hi
st
og

ra
m
FS

st
rin

g_
m
at
ch

lu
_n

cb

bo
os

t_
sp

in
lo
ck

re
f_
co

un
tS

p
ee

d
u
p

Huron	(no	test	cases)

TMI

Huron	(after	production	feedback)

0.
98

1.
02

1.
01

1.
00

1.
00

0.
99 2.

96 3.
53 5.

53

1.
08

1.
17 2.
34

1.
18

1.
25

1.
40

0.
80

0.
67 1.
65

1.
52

1.
92

10
.9

7

Figure 10. Huron’s in-house repair that uses the feedback
received from its in production component provides greater
speedup than TMI.

also observe that on average, Huron’s memory overhead is
less than 8%. Only for lockless_writer, Huron incurs a high
(60%) memory overhead. This happens because there is not
enough data that is being accessed by the same set of threads
in this program. Consequently, Huron has to rely on padding
to eliminate false sharing, which incurs overhead. Sheriff,
on the other hand, uses significantly more memory than the
original benchmark, as it transforms each thread into a pro-
cess (which creates multiple copies of many pages). TMI has
a lower memory overhead than Sheriff, thanks to its various
optimizations (e.g., thread private memory). However, TMI
also uses a few auxiliary buffers to accelerate the detection
and elimination of false sharing. Nevertheless, Huron’s mem-
ory overhead is on average 27× (and up to 197×) lower than
TMI. Although Huron’s in-production repair leverages TMI,
Huron avoids much of TMI’s overhead by fixing most false
sharing instances in house.

	0.1
	1
	10
	100
	1000

lin
ea
r_
re
gr
es
sio
n

hi
st
og
ra
m

hi
st
og
ra
m
FS

st
rin
g_
m
at
ch

lu
_n
cb

bo
os
t_
sp
in
lo
ck

lo
ck
le
ss
_w
rit
er

lo
ck
ed
_w
rit
er

re
f_
co
un
t

M
em
o
ry

o
v
er
h
ea
d

Sheriff 		Huron

32.7

	1.0

13.8

	1.1

13.0

	1.0

32.7

	1.0

53.9

	1.0

377.2

	1.0

170.0

	1.6

104.9

	1.0

223.3

	1.0

Figure 11. Memory overhead comparison to Sheriff. The
y-axis is log scale.

The high memory overhead of TMI and Sheriff also has
a significant impact on the speedup that they can provide.
Specifically, if the underlying system’smemory is constrained,
a program with a large memory footprint will not enjoy the
same speedups that Huron can provide.

To evaluate the effect of memory pressure, we vary the per-
process memory limit from 50 to 25 megabytes and measure

483

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Khan, Zhao, Pokam, Mozafari, & Kasikci

	0.1
	1
	10
	100
	1000

lin
ea
r_
re
gr
es
sio
n

hi
st
og
ra
m

hi
st
og
ra
m
FS

st
rin
g_
m
at
ch

lu
_n
cb

bo
os
t_
sp
in
lo
ck

re
f_
co
un
t

M
em
o
ry

o
v
er
h
ea
d

TMI 		Huron

17.6

	1.0

	7.7

	1.0

	7.3

	1.0

17.6

	1.0

28.2

	1.0

197.1

	1.0

117.8

	1.0

Figure 12.Memory overhead comparison to TMI. The y-axis
is log scale.

the normalized speedup relative to the original benchmark
for Sheriff, TMI, and Huron. As shown in Fig. 13, Huron
provides up to 41% and on average 15% more speedup than
Sheriff. Similarly, Huron provides up to 214% and on average
49% more speedup than TMI, as shown in Fig. 14.

	0

	1

	2

Unlimited 50 45 40 35 30 25

S
p
ee
d
u
p

Memory	limit	for	the	program	(Megabytes)

Sheriff 		Huron

1.
01 1.
17

0.
94 1.
03

0.
97 1.
10

1.
01 1.
13

1.
01 1.
12

0.
76 1.
07

0.
92

0.
93

Figure 13.Huron achieves up to 41% (15% on average) higher
speedup than Sheriff when we limit the memory for the lu_-
ncb benchmark. All standard deviations are less than 0.59%.

	0

	1

	2

	3

Unlimited 50 45 40 35 30 25

S
p
ee

d
u
p

Memory	limit	for	the	program	(Megabytes)

TMI 		Huron

1.
25 1.
40

1.
04 1.
22

1.
06 1.
29

1.
06 1.
28

1.
11 1.
29

0.
76 1.

05

0.
68

2.
14

Figure 14. Huron achieves up to 214% (49% average) higher
speedup than TMI when we limit the memory for the lu_ncb
benchmark. All standard deviations are less than 4.16%.

5.8 Overhead of Huron’s In-House Detection

The key advantage of in-house detection is that it is an offline
process, and hence does not affect the program execution
time in production. However, we still measure the overhead
of Huron’s in-house detection as the time added to the ex-
ecution of the user program, i.e., the execution time of the
instrumented binary minus that of the unmodified one. In
this experiment, we use the same inputs as in ğ5.2. As shown
in Fig. 15, this overhead is on average less than two min-
utes (115 seconds) and is no more than 257 seconds. These

numbers are quite reasonable for an offline process and on
par with the offline overhead of state-of-the-art memory
performance profilers [16, 17, 51, 58, 60].

5.9 Effect of False Sharing Cache on In-Production

Overhead

In this section, we evaluate how the cache of false sharing
bugs detected in house reduces the overhead of Huron’s in-
production false sharing detection. Without Huron’s cache,
the TMI detector (which Huron relies on) does a lot of extra
work to determine (1) the program counter of where false
sharing occurs, (2) whether there is a read-write or write-
write sharing, (3) whether there is true or false sharing.

As shown in Fig. 16, Huron’s cache speeds up in-production
detection up to 27.1× and on average by 11.3×. Note that
for 3 out of 9 benchmarks (linear_regression, string_match,
and lu_ncb) evaluated in ğ 5.4, speedups are not shown, be-
cause TMI removes false sharing from these programs using
its allocator even before false sharing instances occur in
production (i.e., the cache is never used).

Finally, we measure the impact of caching on memory. In
particular, we determine that Huron’s cache takes 512KB in
the worst case and 91.21KB on average. Considering that
the memory overhead of Huron is considerably lower than
state-of-the-art tools (on average 27-59×), we consider the
modest cache overhead to be acceptable.

5.10 Contributions of In-House and In-Production

Repair Techniques

We now quantify the extent to which Huron’s in-house and
in-production repair techniques contribute to the overall effi-
ciency of Huron. For this, we use a benchmark with 10 false
sharing instances. We then vary the number of false shar-
ing instances repaired in house from 1 to 10. Since Huron’s
in-production repair converts threads into processes, it elim-
inates all the remaining false sharing bugs at once.
Fig. 18 shows our results. The in-house speedups are due

to Huron’s in-house repair only, and the hybrid speedups are
due to Huron’s hybrid in-house/in-production repair. Both
in-house and hybrid speedups increase with an increase in
the number of false sharing instances repaired in house. The
contribution of the in-production component is the differ-
ence between the hybrid and the in-house speedup values.
In-house repair contributes more to the overall speedup than
in-production repair. For instance, when five of the false
sharing bugs are fixed in house with the other five repaired
in production, the in-house component provides 39.3% of
the speedup, whereas the in-production component provides
6.8% of the speedup. This trend is stable across data points.

5.11 Effect of Detection Time Window Granularity

on Repair Speedup

As discussed in ğ3.2, Huron’s false sharing detection time
window granularity can impact howmany false sharing bugs
it detects and fixes, and thus the speedup it provides. In this

484

Huron: Hybrid False Sharing Detection and Repair PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

	0
	50
	100
	150
	200
	250
	300

lin
ea
r_
re
gr
es
sio
n

hi
st
og
ra
m

hi
st
og
ra
m
FS

st
rin
g_
m
at
ch

lu
_n
cb

bo
os
t_
sp
in
lo
ck

lo
ck
le
ss
_w
rit
er

lo
ck
ed
_w
rit
er

re
f_
co
un
t

E
xe
cu
ti
o
n

T
im
e	
(s
)

159

64
94

49

139

77
114

75

257

Figure 15. Overhead of Huron’s in-
house detection, in seconds.

	5
	10
	15
	20
	25
	30

hist
ogra

m

hist
ogra

m
FS

lo
ck

le
ss

_w
rit

er

lo
ck

ed
_w

rit
er

re
f_

co
unt

boost
_s

pin
lo

ck

S
p

ee
d

u
p

	o
f

in
-p

ro
d

u
ct

io
n

	f
al

se
sh

ar
in

g
	d

et
ec

ti
o

n

19.81

27.03

3.37

12.81

3.43
1.26

Figure 16. Speedup of in-production
false sharing detection using Huron’s
false sharing cache.

	0

	0.5

	1

	1.5

	2

103 104 105 106 107 No	window

S
p
ee

d
u
p

Window	size	(#	of	memory	accesses)

1.16 1.12

1.78 1.79 1.79 1.79

Figure 17. The effect of detection win-
dow granularity on Huron’s speedup
(lockless_writer benchmark).

	0
	20
	40
	60
	80
	100
	120

1 2 3 4 5 6 7 8 9 10

S
p
ee
d
u
p
	(
%
)

#	of	false	sharing	bugs	fixed	in-house

In-house 		Hybrid

3.
6

21
.8

13
.7 24
.0

20
.6 28
.9

24
.5 34
.9

31
.2 38
.8

39
.3

46
.1

48
.0 58
.8

60
.4

62
.6 71
.9

72
.6 85
.0

84
.2

Figure 18. Huron’s provides greater performance speedup
as more false sharing instances are repaired in house. All
standard deviations are less than 3.62%.

section, we evaluate the effect of the detection time window
granularity on the speedup provided by Huron’s repair.
Fig. 17 shows the speedup provided by Huron for the

lockless_writer benchmark under different window granu-
larities. The probability of missing the detection of a false
sharing bug due to a large time window increases with the
number of falsely-shared cache lines. We choose lockless_-

writer, which we know (via manual inspection of the small
code base) suffers from false sharing in exactly 1024 cache
lines, the largest number across all benchmarks.
The speedup provided by Huron increases with a larger

window size. This is because a small window limits Huron’s
ability to detect out-of-window memory accesses that are
involved in false sharing with in-window memory accesses.
Therefore, Huron misses many false sharing instances for
smaller window sizes and the speedup after repair is sub-
optimal. As the window size increases, so does the number
of detected false sharing instances and the ensuing speedup.

6 Related Work

There is a substantial amount of related work that has studied
the detection and elimination of false sharing. In many cases,
existing work attempts to detect and repair false sharing
through dynamic analysis [25, 75]. Some approaches also rely
on heuristics to make detection and repair more scalable and
efficient [11, 15, 27, 55]. Approaches based on static analysis
can also detect and eliminate false sharing by reorganizing a
program’s code [3, 5, 41]. Alas, static false sharing repair [13,
33, 39] was shown to be mostly effective in well-defined

use cases [47]. Huron combines the best of both worlds to
achieve good accuracy, effectiveness, and efficiency.
Simulators and profilers can be used to detect false shar-

ing. For instance, [65] employs full system simulation using
Simics [53] to identify cache miss causes. Other tools [29, 46]
detect false sharing by instrumentingmemory accesses using
Intel Pin [51] or Valgrind [60]. Predator [49] uses LLVM [44]
instrumentation to record memory accesses by different
threads to detect false sharing. These tools are helpful for
detection; however, they provide few hints as to how to best
repair. These techniques can also incur high runtime over-
head and suffer from false positives [47]. Huron’s hybrid
approach does not suffer from these problems.

In order to reduce the runtime overhead, many techniques
[9, 21, 25, 28, 31, 32, 48, 52, 54, 56, 59, 62] rely on perfor-
mance counter values that are correlated with false sharing
(i.e, Intel HITM [18]). Once the counter events surge beyond
a certain threshold, these techniques trigger a more rigor-
ous detection algorithm [21, 25, 52]. Huron uses a similar
approach for its in-production false sharing detection. How-
ever, because Huron can detect and repair many false sharing
instances in house, it does not trigger in-production false
sharing detection frequently, and thus incurs low overhead.
Another technique uses machine learning on hardware

event counts [32] to detect false sharing. We plan to improve
Huron by leveraging a machine learning-based approach to
speed up its in-house false sharing detection.
A common false sharing elimination approach in prior

work is to transform program threads to processes so that
they no longer share the same address space. While Grace [6]
first proposed this idea to avoid concurrency bugs, Sher-
iff [47] adopted this technique to repair false sharing. This
approach incurs high memory overheads and can be ineffi-
cient because the pages shared across processes need to be
merged frequently. TMI [21] partially addresses these chal-
lenges by introducing a data structure called page twinning
store buffer (PTSB). PTSB has smaller memory footprint, and
it allows pages to be merged more efficiently. Despite these
benefits, the speedup provided by PTSB (and thus TMI) can-
not fully attain the performance benefits provided by manual
repair or Huron (see ğ5.4). Finally, unlike Sheriff and TMI,
Huron does not suffer from false positives.

485

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Khan, Zhao, Pokam, Mozafari, & Kasikci

Many other studies [23, 26, 34ś38, 40, 61, 64, 67, 72, 74]
have investigated data layout optimizations to improve per-
formance. The main goal of these tools is to improve the
memory layout to maximize spatial locality, while Huron
utilizes memory layout transformations to eliminate false
sharing.

7 Conclusion

Detecting and fixing all false sharing is difficult. Even if false
sharing instances are identified during development, repair-
ing them manually can be a daunting task. In this paper,
we described Huron, a hybrid in-house/in-production mech-
anism that detects and repairs false sharing automatically.
Huron’s repair mechanism groups together data accessed by
the same set of threads to shift falsely-shared data to different
cache lines. Huron detects and repairs all false sharing bugs
with 100% accuracy in the 21 benchmarks that we evaluated.
Huron achieves speedups of up to 11× and on average 3.82×.
Overall, Huron is 33.33% more accurate than state-of-the-art
detection and repair tools and it provides up to 8× and on
average 2.11-2.27× greater speedup.

Acknowledgments

We thank our shepherd, Jennifer B. Sartor, and anonymous
reviewers for their insightful feedback and suggestions. This
work was supported by the Intel corporation and Applica-
tions Driving Architectures (ADA) Research Center, a JUMP
Center co-sponsored by SRC and DARPA.

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,

Michael Isard, et al. 2016. Tensorflow: a system for large-scale machine

learning.. In OSDI, Vol. 16. 265ś283.

[2] Lars Ole Andersen. 1994. Program analysis and specialization for the

C programming language. Ph.D. Dissertation. University of Cophen-

hagen.

[3] Jennifer M Anderson and Monica S Lam. 1993. Global optimizations

for parallelism and locality on scalable parallel machines. In ACM

Sigplan Notices, Vol. 28. ACM, 112ś125.

[4] Jon Petter Asen, Jo Inge Buskenes, Carl-Inge Colombo Nilsen, Andreas

Austeng, and Sverre Holm. 2014. Implementing capon beamforming

on a GPU for real-time cardiac ultrasound imaging. IEEE transactions

on ultrasonics, ferroelectrics, and frequency control 61, 1 (2014), 76ś85.

[5] Prithviraj Banerjee, John A Chandy, Manish Gupta, Eugene W Hodges,

John G Holm, Antonio Lain, Daniel J Palermo, Shankar Ramaswamy,

and Ernesto Su. 1995. The PARADIGM compiler for distributed-

memory multicomputers. Computer 28, 10 (1995), 37ś47.

[6] Emery D Berger, Ting Yang, Tongping Liu, and Gene Novark. 2009.

Grace: safe multithreaded programming for C/C++. In ACM sigplan

notices, Vol. 44. ACM, 81ś96.

[7] Christian Bienia, Sanjeev Kumar, and Kai Li. 2008. PARSEC vs.

SPLASH-2: A quantitative comparison of two multithreaded bench-

mark suites on chip-multiprocessors. In Workload Characterization,

2008. IISWC 2008. IEEE International Symposium on. IEEE, 47ś56.

[8] William J Bolosky and Michael L Scott. 1993. False sharing and its

effect on shared memory performance. In Proceedings of the Fourth

symposium on Experiences with distributed and multiprocessor systems.

[9] Milind Chabbi, Shasha Wen, and Xu Liu. 2018. Featherlight on-the-

fly false-sharing detection. In Proceedings of the 23rd ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming. ACM,

152ś167.

[10] Jia Chen. 2018. Andersen’s inclusion-based pointer analysis re-

implementation in LLVM. https://github.com/grievejia/andersen. [On-

line; accessed 16-Nov-2018].

[11] Mei-Ling Chiang, Chieh-Jui Yang, and Shu-Wei Tu. 2016. Kernel

mechanisms with dynamic task-aware scheduling to reduce resource

contention in NUMA multi-core systems. Journal of Systems and

Software 121 (2016), 72ś87.

[12] Trishul M Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik

Kalyanaraman. 2014. Project Adam: Building an Efficient and Scalable

Deep Learning Training System.. In OSDI, Vol. 14. 571ś582.

[13] Jyh-Herng Chow and Vivek Sarkar. 1997. False sharing elimination

by selection of runtime scheduling parameters. In Parallel Processing,

1997., Proceedings of the 1997 International Conference on. IEEE, 396ś

403.

[14] Daniel Clifford, Hannes Payer, Michael Stanton, and Ben L Titzer. 2015.

Memento mori: dynamic allocation-site-based optimizations. In ACM

SIGPLAN Notices, Vol. 50. ACM, 105ś117.

[15] Alexander Collins, Tim Harris, Murray Cole, and Christian Fensch.

2015. Lira: Adaptive contention-aware thread placement for parallel

runtime systems. In Proceedings of the 5th International Workshop on

Runtime and Operating Systems for Supercomputers. ACM, 2.

[16] Emilio Coppa, Camil Demetrescu, and Irene Finocchi. 2012. Input-

sensitive profiling. ACM SIGPLAN Notices 47, 6 (2012), 89ś98.

[17] Emilio Coppa, Camil Demetrescu, Irene Finocchi, and Romolo Marotta.

2013. Multithreaded input-sensitive profiling. arXiv preprint

arXiv:1304.3804 (2013).

[18] Intel Corparation. 2016. Intel (R) 64 and IA-32 Architectures Software

Developer’s Manual. Combined Volumes, Dec (2016).

[19] Florian David, Gaël Thomas, Julia L. Lawall, and Gilles Muller. 2014.

Continuously measuring critical section pressure with the free-lunch

profiler. In OOPSLA.

[20] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,

Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al.

2012. Large scale distributed deep networks. In Advances in neural

information processing systems. 1223ś1231.

[21] Christian DeLozier, Ariel Eizenberg, Shiliang Hu, Gilles Pokam, and

Joseph Devietti. 2017. TMI: thread memory isolation for false shar-

ing repair. In Proceedings of the 50th Annual IEEE/ACM International

Symposium on Microarchitecture. ACM, 639ś650.

[22] David Dice. 2011. False sharing induced by

card table marking. https://blogs.oracle.com/dave/

false-sharing-induced-by-card-table-marking. [Online; last

accessed 05-August-2018].

[23] Wei Ding and Mahmut Kandemir. 2014. CApRI: CAche-conscious

data reordering for irregular codes. ACM SIGMETRICS Performance

Evaluation Review 42, 1 (2014), 477ś489.

[24] efeslab. 2019. Huron: A false sharing detection and repair tool. https:

//github.com/efeslab/huron. [Online; accessed 12-April-2019].

[25] Ariel Eizenberg, Shiliang Hu, Gilles Pokam, and Joseph Devietti. 2016.

Remix: online detection and repair of cache contention for the JVM.

In ACM SIGPLAN Notices, Vol. 51. ACM, 251ś265.

[26] Olga Golovanevsky, Alon Dayan, Ayal Zaks, and David Edelsohn. 2010.

Trace-based data layout optimizations for multi-core processors. In

International Conference on High-Performance Embedded Architectures

and Compilers. Springer, 81ś95.

[27] Daniel Goodman, Georgios Varisteas, and Tim Harris. 2017. Pandia:

comprehensive contention-sensitive thread placement. In Proceedings

of the Twelfth European Conference on Computer Systems. ACM, 254ś

269.

486

https://github.com/grievejia/andersen
https://blogs.oracle.com/dave/false-sharing-induced-by-card-table-marking
https://blogs.oracle.com/dave/false-sharing-induced-by-card-table-marking
https://github.com/efeslab/huron
https://github.com/efeslab/huron

Huron: Hybrid False Sharing Detection and Repair PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

[28] Joseph L Greathouse, Zhiqiang Ma, Matthew I Frank, Ramesh Peri, and

Todd Austin. 2011. Demand-driven software race detection using hard-

ware performance counters. In ACM SIGARCH Computer Architecture

News, Vol. 39. ACM, 165ś176.

[29] Stephan M Günther and Josef Weidendorfer. 2009. Assessing cache

false sharing effects by dynamic binary instrumentation. In Proceedings

of the Workshop on Binary Instrumentation and Applications. ACM, 26ś

33.

[30] Changwan Hong, Wenlei Bao, Albert Cohen, Sriram Krishnamoorthy,

Louis-Noël Pouchet, Fabrice Rastello, J Ramanujam, and Ponnuswamy

Sadayappan. 2016. Effective padding of multidimensional arrays to

avoid cache conflict misses. In ACM SIGPLAN Notices, Vol. 51. ACM,

129ś144.

[31] Intel. 2017. Tutorial: Identifying False Sharing - C Sample Code. https:

//software.intel.com/en-us/vtune-memory-access-tutorial-linux-c

[32] Sanath Jayasena, Saman Amarasinghe, Asanka Abeyweera, Gayashan

Amarasinghe, Himeshi De Silva, Sunimal Rathnayake, Xiaoqiao Meng,

and Yanbin Liu. 2013. Detection of false sharing using machine learn-

ing. In Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis. ACM, 30.

[33] Tor E Jeremiassen and Susan J Eggers. 1995. Reducing false sharing on

shared memory multiprocessors through compile time data transforma-

tions. Vol. 30. ACM.

[34] Ismail Kadayif and Mahmut Kandemir. 2004. Quasidynamic layout

optimizations for improving data locality. IEEE Transactions on Parallel

& Distributed Systems 11 (2004), 996ś1011.

[35] M Kandemir, A Choudhary, and J Ramanujam. 1998. Improving locality

in out-of-core computations using data layout transformations. In

InternationalWorkshop on Languages, Compilers, and Run-Time Systems

for Scalable Computers. Springer, 359ś366.

[36] Mahmut Kandemir, Alok Choudhary, J Ramanujam, and Prithviraj

Banerjee. 1999. A framework for interprocedural locality optimization

using both loop and data layout transformations. In Parallel Processing,

1999. Proceedings. 1999 International Conference on. IEEE, 95ś102.

[37] Mahmut Kandemir, Alok Choudhary, J Ramanujam, and Prithviraj

Banerjee. 1999. A graph based framework to detect optimal memory

layouts for improving data locality. In Parallel Processing, 1999. 13th

International and 10th Symposium on Parallel and Distributed Processing,

1999. 1999 IPPS/SPDP. Proceedings. IEEE, 738ś743.

[38] Mahmut Kandemir, Alok Choudhary, Jagannathan Ramanujam, Na-

garaj Shenoy, and Prithviraj Banerjee. 1998. Enhancing spatial locality

via data layout optimizations. In European Conference on Parallel Pro-

cessing. Springer, 422ś434.

[39] Mahmut Kandemir, Alok Choudhary, J Ramaujam, and Prithviraj

Banerjee. 1999. On reducing false sharing while improving locality on

shared memory multiprocessors. In Parallel Architectures and Compi-

lation Techniques, 1999. Proceedings. 1999 International Conference on.

IEEE, 203ś211.

[40] Mahmut Kandemir and Ismail Kadayif. 2001. Compiler-directed selec-

tion of dynamic memory layouts. In Proceedings of the ninth interna-

tional symposium on Hardware/software codesign. ACM, 219ś224.

[41] Ken Kennedy and Ulrich Kremer. 1995. Automatic data layout for high

performance Fortran. In Proceedings of the 1995 ACM/IEEE conference

on Supercomputing. ACM, 76.

[42] Randall L. Hyde and Brett D. Fleisch. 1996. An Analysis of Degenerate

Sharing and False Coherence. 34 (05 1996), 183ś195.

[43] Chris Lattner. 2008. LLVM and Clang: Next generation compiler

technology. In The BSD conference. 1ś2.

[44] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-

work for lifelong program analysis & transformation. In Proceedings

of the international symposium on Code generation and optimization:

feedback-directed and runtime optimization. IEEE Computer Society,

75.

[45] Ming Li, Shucheng Yu, Yao Zheng, Kui Ren, and Wenjing Lou. 2013.

Scalable and secure sharing of personal health records in cloud com-

puting using attribute-based encryption. IEEE transactions on parallel

and distributed systems 24, 1 (2013), 131ś143.

[46] CL Liu. 2009. False sharing analysis for multithreaded programs.

Master’s thesis, National Chung Cheng University (2009).

[47] Tongping Liu and Emery D Berger. 2011. Sheriff: precise detection

and automatic mitigation of false sharing. ACM Sigplan Notices 46, 10

(2011), 3ś18.

[48] Tongping Liu and Xu Liu. 2016. Cheetah: detecting false sharing

efficiently and effectively. In Proceedings of the 2016 International Sym-

posium on Code Generation and Optimization. ACM, 1ś11.

[49] Tongping Liu, Chen Tian, Ziang Hu, and Emery D. Berger. 2014.

PREDATOR: Predictive False Sharing Detection. In Proceedings of

the 19th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming (PPoPP ’14). ACM, New York, NY, USA, 3ś14.

https://doi.org/10.1145/2555243.2555244

[50] Tongping Liu, Guangming Zeng, Abdullah Muzahid, et al. 2017.

Syncperf: Categorizing, detecting, and diagnosing synchronization

performance bugs. In Proceedings of the Twelfth European Conference

on Computer Systems. ACM, 298ś313.

[51] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,

Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-

wood. 2005. Pin: building customized program analysis tools with

dynamic instrumentation. In Acm sigplan notices, Vol. 40. ACM, 190ś

200.

[52] Liang Luo, Akshitha Sriraman, Brooke Fugate, Shiliang Hu, Gilles

Pokam, Chris J Newburn, and Joseph Devietti. 2016. LASER: Light,

accurate sharing detection and repair. In High Performance Computer

Architecture (HPCA), 2016 IEEE International Symposium on. IEEE, 261ś

273.

[53] Peter S Magnusson, Magnus Christensson, Jesper Eskilson, Daniel

Forsgren, Gustav Hallberg, Johan Hogberg, Fredrik Larsson, Andreas

Moestedt, and Bengt Werner. 2002. Simics: A full system simulation

platform. Computer 35, 2 (2002), 50ś58.

[54] Joe Mario. 2016. C2C - False Sharing Detection in Linux Perf. https:

//joemario.github.io/blog/2016/09/01/c2c-blog/. [Online; last accessed

04-August-2018].

[55] Jason Mars and Lingjia Tang. 2013. Understanding application con-

tentiousness and sensitivity on modern multicores. In Advances in

Computers. Vol. 91. Elsevier, 59ś85.

[56] Robert Martin, John Demme, and Simha Sethumadhavan. 2012. Time-

Warp: rethinking timekeeping and performance monitoring mech-

anisms to mitigate side-channel attacks. ACM SIGARCH Computer

Architecture News 40, 3 (2012), 118ś129.

[57] mcmcc. 2012. False sharing in boost::detail::spinlock_-

pool? https://stackoverflow.com/questions/11037655/

false-sharing-in-boostdetailspinlock-pool. [Online; accessed

09-June-2018].

[58] Svetozar Miucin, Conor Brady, and Alexandra Fedorova. 2016. End-to-

end memory behavior profiling with DINAMITE. In Proceedings of the

2016 24th ACM SIGSOFT International Symposium on Foundations of

Software Engineering. ACM, 1042ś1046.

[59] Mihir Nanavati, Mark Spear, Nathan Taylor, Shriram Rajagopalan,

Dutch T Meyer, William Aiello, and Andrew Warfield. 2013. Whose

cache line is it anyway?: operating system support for live detection

and repair of false sharing. In Proceedings of the 8th ACM European

Conference on Computer Systems. ACM, 141ś154.

[60] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework

for heavyweight dynamic binary instrumentation. In ACM Sigplan

notices, Vol. 42. ACM, 89ś100.

[61] Adrian Nistor, Linhai Song, DarkoMarinov, and Shan Lu. 2013. Toddler:

Detecting performance problems via similar memory-access patterns.

487

https://software.intel.com/en-us/vtune-memory-access-tutorial-linux-c
https://software.intel.com/en-us/vtune-memory-access-tutorial-linux-c
https://doi.org/10.1145/2555243.2555244
https://joemario.github.io/blog/2016/09/01/c2c-blog/
https://joemario.github.io/blog/2016/09/01/c2c-blog/
https://stackoverflow.com/questions/11037655/false-sharing-in-boostdetailspinlock-pool
https://stackoverflow.com/questions/11037655/false-sharing-in-boostdetailspinlock-pool

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Khan, Zhao, Pokam, Mozafari, & Kasikci

In Proceedings of the 2013 International Conference on Software Engi-

neering. IEEE Press, 562ś571.

[62] Aleksey Pesterev, Nickolai Zeldovich, and Robert TMorris. 2010. Locat-

ing cache performance bottlenecks using data profiling. In Proceedings

of the 5th European conference on Computer systems. ACM, 335ś348.

[63] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski,

and Christos Kozyrakis. 2007. Evaluatingmapreduce formulti-core and

multiprocessor systems. In High Performance Computer Architecture,

2007. HPCA 2007. IEEE 13th International Symposium on. Ieee, 13ś24.

[64] Shai Rubin, Rastislav Bodík, and Trishul Chilimbi. 2002. An efficient

profile-analysis framework for data-layout optimizations. In ACM

SIGPLAN Notices, Vol. 37. ACM, 140ś153.

[65] Martin Schindewolf. 2007. Analysis of cache misses using SIMICS.

Master’s thesis (2007).

[66] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra

Modadugu, and Dan Boneh. 2004. On the Effectiveness of Address-

space Randomization. In Proceedings of the 11th ACM Conference on

Computer and Communications Security (CCS ’04). ACM, New York,

NY, USA, 298ś307. https://doi.org/10.1145/1030083.1030124

[67] Byoungro So, Mary W Hall, and Heidi E Ziegler. 2004. Custom data

layout for memory parallelism. In Code Generation and Optimization,

2004. CGO 2004. International Symposium on. IEEE, 291ś302.

[68] Daniel J Sorin, Mark D Hill, and David A Wood. 2011. A primer

on memory consistency and cache coherence. Synthesis Lectures on

Computer Architecture 6, 3 (2011), 1ś212.

[69] Herb Sutter. 2009. Eliminate false sharing. Dr. Dobb’s Journal 5 (2009).

[70] O. Temam, E. D. Granston, and W. Jalby. 1993. To copy or not to copy:

A compile-time technique for assessing when data copying should be

used to eliminate cache conflicts. In Supercomputing ’93:Proceedings

of the 1993 ACM/IEEE Conference on Supercomputing. 410ś419. https:

//doi.org/10.1109/SUPERC.1993.1263488

[71] WikiSysop. [n. d.]. Atomic operations library. https://en.cppreference.

com/w/cpp/atomic. [Online; last accessed 07-August-2018].

[72] Zhichen Xu, James R Larus, and Barton P Miller. 1997. Shared-memory

performance profiling. In ACM SIGPLAN Notices, Vol. 32. ACM, 240ś

251.

[73] Tingting Yu and Michael Pradel. 2018. Pinpointing and repairing

performance bottlenecks in concurrent programs. Empirical Software

Engineering 23, 5 (2018), 3034ś3071.

[74] Yuanrui Zhang, Wei Ding, Jun Liu, and Mahmut Kandemir. 2011. Opti-

mizing data layouts for parallel computation on multicores. In Parallel

Architectures and Compilation Techniques (PACT), 2011 International

Conference on. IEEE, 143ś154.

[75] Qin Zhao, David Koh, Syed Raza, Derek Bruening, Weng-Fai Wong,

and Saman Amarasinghe. 2011. Dynamic cache contention detection

in multi-threaded applications. In ACM SIGPLAN Notices, Vol. 46. ACM,

27ś38.

488

https://doi.org/10.1145/1030083.1030124
https://doi.org/10.1109/SUPERC.1993.1263488
https://doi.org/10.1109/SUPERC.1993.1263488
https://en.cppreference.com/w/cpp/atomic
https://en.cppreference.com/w/cpp/atomic

	Abstract
	1 Introduction
	2 Background and Challenges
	2.1 Effectiveness
	2.2 Efficiency
	2.3 Accuracy

	3 Design
	3.1 Instrumentation Pass
	3.2 In-House False Sharing Detection
	3.3 Memory Layout Transformation Pass
	3.4 Input-Independent False Sharing Repair
	3.5 In-Production False Sharing Detection and Repair

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Accuracy of False Sharing Detection
	5.3 Ability to Repair False Sharing Bugs
	5.4 Effectiveness Comparison to State of the Art
	5.5 Effectiveness of Huron's Input-Independent Repair
	5.6 Impact of Test Cases on Effectiveness
	5.7 False Sharing Repair Overhead
	5.8 Overhead of Huron's In-House Detection
	5.9 Effect of False Sharing Cache on In-Production Overhead
	5.10 Contributions of In-House and In-Production Repair Techniques
	5.11 Effect of Detection Time Window Granularity on Repair Speedup

	6 Related Work
	7 Conclusion
	References

